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I ABSTRACT

j The statistical theory of radio direction finding as it applies to three-dimensional geometrics is

presented in this report. This theory is an extension of the two-dimensional theory presented by R. G.

Stansfield in 1947. The theory has application in situations where airborne targets are maneuvering in

I three dimensions at high speed; and, especially when the platforms with the direction finding equip-
ment are also aircraft.
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SECTION I

INTRODUCTION

It is the primary objective of this report to present the principal features and results of a statistical
theory descriptive of the process of radio direction finding. The theory presented here is based upon
that developed by R.G. Stansfield as documented in his paper of 1947 (Reference I). The unique
Feature of the theory presented herein is its applicability to three-dimensional geometries, as opposed to
the two-dimensional nature of the Stansfield theory; in this sense, then, the radio direction finding
theory presented within this report is an extension of Stansfield's theory.

Interest in pursuing an extension of Stansfield's theoy to three dimensions was aroused as the
result of a discussion with a colleague regarding the problem of passively determining the position of a
moving, radiating target. It became obvious that it would, in general, be necessary to employ several
dispersed direction finding sites capable of simultaneous bearing-line measurements.

Conceptually, this circumstance leads to no difficulties until one begins to consider applying
Stansfield's theory to provide analytical characterization of such a direction finding scheme. Indeed, if
one contemplates the situation wherein the target is a maneuvering, high-speed aircraft, and the direc-
tion finding sites consist of several "picket" or early warning aircraft with direction finding equipment
onboard, it would be very difficult if not impossible to control the picket aircraft so that they and the
target aircraft stayed in the same geometric plane during the period of encounter. This would never be
done operationally; but one would have to assume this geometry to apply Stansfield's theor. directly to
any analytical evaluation of the encounter. This is not meant to suggest that Stansfield's theory has no
useful applications; it has. in fact, been the cornerstone of direction finding aralysis for the last 33
years. In each instance where it has been applicable, however, the physical circumstance under investi-
gation has allowed valid application of the two-dimensiona| theory (e.g., see References 2 and 3). It is
still true today that the bulk of the hardware devoted exclusively to radio direction finding applications
can measure bearing lines in a single plane only. The point to be made here is that there are a number
of cirrimstances in which the ability to perform three-dimensional direction finding measurements
would be extiemely useful, and, to that end, a three-dimensional extension of Stansfield's two-
dimensional direction finding theory is necessary in order to provide a suitable analytical tool for
evaluating the effectiveness of current or prospective three-dimensional direction finding systems.

Circumspect review of this document by persons cognizant of or interested in direction finding
applications and procedures is deemed essential and is heartily invited. Comments, suggestions, and
criticism are ,:ncouraged not only to support the evolution of a more intelligible, useful report, but also
to help in assessing the basic worth of and/or need for what is presented here. Indeed, there is some
doubt as to the uniqueness of this material, i.e., even though a limited review of some current lilera-
ture (e.g., see Reference 4) has failed to Lncover or suggest any other three-dimensional extension of
Stansfield's direction finding theory, one cannot help but feel that this should have (and certainly could
ha',e) been accomplished prior to this date.

The remainder of this memorandum will present first a brief discussion of Stanslield's two-
dimensional radio direction finding theory. and then present a discussion of the three-dimensional radio
direction finding theory. A precedent discussion of Stansfield's theory will obviate, at least initially, the
acquisition oi Stansfield's original paper by the reader and will provide a convenient point of departure
from which to initiate a discussion of the three-dimensional theoi.. Of even more importance. how-
ever, is the sense of correspondence and/or distinction to be gained by the reader when comparing
Stansfield's two-dimensional results wth those of the thize-dimensional theory'; e.g.. as a minimum

i requirement for credibility, one wauld expect the results of the thice-dimensional theory to coincide
with those of Stansfield's theory far planar geometries with null elevation error. and to appreciate such
coincidence, the reader must 5e acquainted with Stansfield's theory.

In what follows, the terms "direction finding," or "direction finder" will be abbreviated as DF,"
where the meaning should be clear from the context in which the abbreviation is used. Likewise "BL"
and "BA" will be used to represent the words "bearing line" and "bearing angle," respectively.

AI
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SECTION 2

S~ STANSFIELD'S THEORY)

I- 2.1 THE TWO-DIMENSIONAL DF ENCOUNTER ar
Figure 2-1 illustrates the general distribution of the participants and identifies the parameters used

to characterize the two-dimensional DF encounter. The target transmitter whose location is to be
determined and all of the DF sites attempting to measure the angles of BLs to the transmitter are Con-

1% sidered to be in the same geometrical plane. Points in this "encounter plane" are labeled via a fixed
cartesian coordinate system with an origin Oat the position of the target transmitter.

As mentioned, each DF site employs some form of directional antenna system in order to derive
the angle of a BL from the DF site toward the transmitter location. The situation for the j'th DF site is
shown in detail in Figure 2-1. The BL to the actual transmitter location is the line JO with a BA of 0,
and length D,_ However, due to instrumental, propagational, and operator errors, the measured B1. is
along the line JPwith a BA of 0, + 0!,. where 4j, is the BA error.

IA
uy 4

S (x, y)
P

0 A

Transmitterpi Location

* 1st DF Site

D.

* 2nd DF Site

*nth DF Site

ith DF Site P0-75

Figure 2-1 Two-Dimensional Radio DF Geometry and Parameters

A fundamental assumption made by Stansfield is that the BA error th, is the value of a normally distri-
buted random variable q'I', where

( '; q,, + d,,)= p-(0,)-d-p, -1 (. _
it- - e 2o- 2
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A similar assumption will be made for the azimuth and elevation BA errors when three-dimensional
geometries are considered.

Rather than use 0I, as the basic indication nf the amount by which the j'th DF Atie's BL measure-
ment is in error, the length p, of the line P() is used. The line PT is cons.tructed from the
transmitter location 0 perpendicular to the measu'ed BL along /P. The length p, is called the bearing
error. Another fundamental assumption made by Stansfield is that the standard deviation of the BA
errors or, is so small that the region of uncertainty determined by the entire set of measured BLs is
small in comparison with the distances D,. In this case. p, is related to ii, by the approximate relation

Di= l)i1, (2)

This means that p, is the value of a random variable P11 where

< =P + 11 ,P/J

= I(p,)dp, = _P1_p 1,r :2)'exp lip, (3)

and where

= (F(J ,rD, (4)

One of the n DF sites of Figure 2-1 is also a DF operations center to which all of the other DF
sites send reports giving their measured BAs to the target transmitter. Having received the complete
set of BA data, the personnel of the I)F operations center must somehow use that data to generate an
estimate of the location (the coordinates) of the transmitter. Suppose that the operations center per-
sonnel hypothesize the transmitter's locaoion to be at the point S. Relative to the fixed reference sys-
tem with origin at 0, the line OS defines a position vector 7 = xb, + yh,, so that the coordinates of the
point S relative to the reference system are (x..). It must be emphasized here that the DF operations
center personnel have no knowledge of the coordinates (-.)) of the point S relativc to the reference
system at 0, for if they did, they could maneuver their hypothetical point S so as to diminish x and .j
and locate the transmuter with an arbitrarily small error. The coordinate reference system at 0 exists
for analytical convenience and is not intended to represent any operational system of measurement.

lliwever, when the BL for any DF sight is plotted, the DF operations cente•r personnel can meas-
ure the "perceived error." In Figure 2-1, the measured BA of the j'th DF site yields a BL that lies
along JQ, and the perceived error is the length of the perpendicular line SQ, written as q,. The per-
ceived error q,, in contradistinction with the actual error p,, is the bearing error attributed to the j'th
DF site by the personnel of the DF operations center as a result of their hypothesis that the transmitter
is at point S. Of course, q, and p, are further distinguished by the fact that q, is a quantity known to
the personnel of the DF operations center, while p, is not known to them. Indeed, the IF operations
center personnel can employ knowledge of' the set of perceived errors {qj, A = 1, 2, 3 .,. n (one for
each DF site) to select a "best estimate" or "fix" for the hypothesized location Sof the transmitter.

The set of perceived errors (qA) accumulated at the DF operations center is con.idcted to be a
sample of n independent, normally distributed random variables Q1 Q ..... Q,,. In this case, the pioba-
bility of observing any specific set of perceived errors {q,,j is given by:

SI -3-
P~jqj) 27T e--
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The best estimate for the location of the transmitter is now taken io be the point Swhose associated set
of perceived errors {q•j has the highest likelihood of being observed. As mentioned by Stansfield, this I
is an application of the statistical sampling principle known as the theorem of maximum likelihood. V
The expression of equation (5) will be maximized by that set of perceived errors {qA) that minimizes
the argument A of the exponential, where,

W,

A = I .- (6)

If we now define e• = • (the vertical bars signify the absolute value of the ratio between them)

I -DA

as the relative bearing error of the k'th DF site, the quantity A is seen to be the sum of the squares of
the relative bearing errors over all the DF sites. Stansfield's maximum likelihood criterion for choosing
the fix point S of the transmitter is seen to be equivalent to selecting the point S whose associated per-ceived errors {}qj satisfy a 'least squares" criterion as applied to the relative errors EA.

In Figure 2-2, a unit vector 4, (horizontal bars above single letters signify a vector quantity, and a
carat above a letter indicates that the quantity being described is a unit vector) is defined along the
direction of the line QSand is given approximately by

= sin 6,&, - cos 0, f, (7)

and reference to the figure yields for q, (the length of QS) the expression

qj = p, + 7 •', (8)

The "dot" between i and 4. indicates a scalar product of these vectors. Employing equations (7) and
(8), equation (6) can be rewritten as

-- 4

I,

A/
UQ

uy

S

0"A

PO-75

-J

Figure 2-2 A Magnified View of the Coordinate Origin to Determine -q
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(p, + .A sin 0, - v Cos / )2A = •(9)
i (Gr, D,)

[he sum of the squares of the relative errors is now expressed in terms oi the actual bearing errors p,
and the coordinates (x.- ) of the h)pothesized transmitter location S This is a critical result that
allowed Stansfie.i to find closed form expressions for the fix coordinates (.\ j ) for any single attempt at
locating the transmitter when the actual bearing errors are given and to describe the statistica! features
of the pair (.6.v) when the actual bearing errors are characterized as random ',ariables.

2.2 THE TWO-DIMENSIONAL DF ANALYTICAL RESULTS

If one uses equation (9) to evaluate and' and then the equations 1 J =0 and(J =0

constitute two equations in the two unknowns x and i' which can be solved for .V and j Solving these
equations one finds

- (Ar,D,)" ' cos 0, - 1A sin 0, (10)

"0(11 - t'2) (IT JD,)2-

where

= sin 2 (2G y I D I= (12 )

/)2= (13)

(Qr,D)2

-sin 0, cos 0, (14)
(,r, D,)2

Although not represented explicitly, the summations are over the index /for j= 1, 2 .... n; i.e, the sum-

mations contain one term associated with each I)F site

Equations (10) and (11) are Stansfield's equations for the fix coordinates that would be deter-
mined by the personnel of the DF operations center for any single location attempt; wherein the actual

•1. bearing errors are the set {p,},I = 1, 2 ..... n. Other than the set of actual bearing errors, the values for
the fix coordinates depend upon the geometrical distribution of the DF sites relative to the actual

; .3 transmitter location (represented by the parameter sets 10I,1 and ID,I) and the instrumental, propaga-
tional, and operator error characteristics (represented by the parameter set {o'})).

"Notice that if we do not wish to or cannot describe the distribution of the bearing errors as nor-
nially distributed about the actual target position, we can use a more general form of equation (6) givenI by

•~~q 2 (•
A QA 2=7 13  (15)

where Q4 2, is the mean squared value of the random variable Q, which characterizes the bearing error

t-
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of the k'th DF site. If QA is other than nqrmally distributed about the actual target position, then, in
general, Q will not be equal to I -AD4. In this case, equations (10) ,hrough (14) are still useful

when ( (,D,D) 2 is replaced by (QA 2).

If one rewrites equations (10) and (11) as I
I p_ cos o, p, sin 0,

S= P v : (17)

(At. - v2) ((oO) 2 (oIJD,)2

one sees that these equations take the form

x2) 2) (18)
(AM - V( - 2)

ST1 t (19)

where

,-, COS 0, (20) 4

= p, sin 0, (21)

Since 1, is the value of a random variable P,, it is clear that i and t are the values of random variables
we will designate as Y and 0, respectively, and thus x and y are the values of random values to bc
designated as X and Y, respectively. Equations (18) and (19) mean that our random variables satisfy
similar equations; i.e.,

X V (22)
(A4 - v2 ) (AMA - v2)

A y - v 0 (23)
- ,2) ( -2)

Recall that, consistent with Stansfield's assumptions, the random variables { P1 } are all distributed in a
similar fashion with zero means. Thus, the central limit theorem can be invoked to contend that the
random variables Y and ( are normally distributed with zero means (Reference 5). This being the
case, we also know that X and Y are normally distributed (reference 6).

If Y and -0 are normally distributed, then their joint density will be given, in general, by (Refer-
ences 5, 6, and 7)

- 6- ".
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expI2!1 - 2 Rut + £
2 " R'u) = (24)

":01,7 27" ,r,, r, (I 2R2)

where or, and or, are the standard deviations of Y and (-0, respectively, and R is the correlation
coefficient of Y and 0. Evaluation of or,,. a-,, and R give

V, (25)

a-, =(26)

R V (27)
(• x) '/."

If equations (18) and (19) are inverted, they yield

1 /Ay. - VX (28)

I= vv - Xx (29)

and substitution of equations (25) through (29) into (24) gives

1-2 1
p _(.Fy) = 2 x (30)

When changing coordinates from the (Ui,) space to the (xy) space, we have in general that

pC-C'y) = p'(X'y) J(u1.t/xVy) (31)

where J(u,t/x,y) is the Jacobian determinant for the transformation. In this case,

= - (32)

so with (31) and (32), equation (30) becomes

CVxy 0 - e2 x [x) =- ( X.\ 2v.\- + (33)
_exp -(\. xt+ t4.)2)j27r 1-2

Following equations (j0) and (11), equation (33) constitutes the second significant analytical
result of Stansfield's two-dimensional radio DF theory. Equation (33) is the joint probability density of
the random variables Xand Y, the coordinates of the DF position fix for the target transmitter. When
multiplied ,y the differential area of a neighborhood about the point (xy), it determines the likelihood
that the DF fix resulting from any given attempt to locate the target transmitter will lie within thatI differential neighborhood of the point (x. v). The quadratic nature of the argument of the exponential
and the fact that A and g are greater than or equal to zero indicates that the contours of constant likeli-
hood are ellipses in the encounter plane centered on the actual target position (the point 0 in Figures
2-1 and 2-2). It is, of course, possible to specify a system of coordinates rotated about 0 by the angle
4 relative to the system x-y in terms of which these elliptical contours can be expressed as a sirmple
sum of squares of the coordinates (x0,Y0). If in Figure 2-3 we suppose that the locus of points which

-7-
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constitute a given elliptical contour of constant likelihood can be expressed in canonical form as

X0a2 + 0' = A2  (34)

where k2 is a positive constant, then use of the coordinate transformation between the x0yo and x y
coordinate systems with equation (34) yields an expression for the locus as expressed in the x y coordi-
nate system

vok

\\

0 X PO-75

Figure 2-3 The Coordinate System x0yo Rotated About 0 Relative to the System Xy

+o2~ A72 .+ 2 sinq cos 4)J -
a2  + 2 J ( 2  b2

+ c!s + C-2  (35)

Comparison with the argument of the exponential in etLuation (33) yields

=cos
2  + sn k(36)
a2 2

a 1 b

a . -sin • cos (3 7

.-- •+"-si2 b 2 .b2 =t 35 •

ai

sn = + + c + (38)

a 2  b2

From equations (36) through (38) we find

'2 -8-
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-2' = sin 24 (39)

II a1
A - = cos 2,- a bL (40)

thus

tan 24 = 2v (41)

This is another of Stansfield's results and allows one to determine the angle 4, - < 4, which

specifies the orientation of the Xoio axes relative to the xv axes.

Use of equations (39) and (40) also gives the result

a2 - b2  +A + 4_)2+4v2] (42)

and since

A +j.- = -" + bL (43)
a2 b2

then fiom equations (42) and (43) we have

k= + z - (x -- .)t +4 (44)

a2 +_X + 4( + (45)

2 2

where the upper signs apply for - > 0, and the lower signs apply for a- b- I < 0. The

sign option arises here because the form (35) results whether the semimajor axes of the ellipse lies
along the x0 axes or the Yo axes.

Using equations (36) through (38) once again, we find

•Z? (kA - P2)': = _(46)
ab (6

so equation (33) can be rewritten for the x0yo coordinate system as

= I j f 0
2 +o 2

P (-x0 .. 0 ) = exp (4" +)17a 21 a2 b2

This joint probability density function for the random variables X0 and Yo, when multiplied by a

differential area, determines the likelihood that the fix coordinates resulting from any given attempt to
locate the target transmitter will fall within a differential neighborhood of the point (XoYo).

i.. .
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Notice that using equations (39) and (43) one can derive tile ancillary results, (8

= �+ V
2 sin 24b

I +
These provide an additional and, perhaps, a more convenient way to calculate --3- and as compared

with equations (44) and (45). However, equations (48) and (49) are mentioned here primar;iy as
replacements for Stansfield's equations (15) and (16) which are in error [direct addition of Stansfield'I11
equations (15) and (16) yields the result -L- + -L = 2(k + gi), which is contrary to equation (43)1.

Consider now Figure 2-4 and the problem of determining the likelihood of the event .\'oyo' 4EA

that the coordinates (.o'.o'J of a DF fix will fall within the shaded region A4. The locus of points

defining the boundary of this elliptical region satisfy the equation

Xo + -'- k (50)

Yo

kb
AIkI

1
P0-75

Figure 2-4 A Contour of Equal Likelihood Bounding the Region AA

- 10J- '
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A family of concentric ellipses about the point 0 to which the ellipse of equation (50) belongs is
defined by

0
2  Y 2

0+- YO = K2, 0 < K <oo (51)
a2  b

2

The probability that the fix point ( voyo )will lie between the elliptical contours defined by K and K +
dK is, by using equation (47),

p(xo,yo) dxodvo- K exp K dK (52).
K.• + dKP

Thus, the desired probability can be evaluated by

so

P J.' EAA) I K- IexpF-ýi1d (53)
F

Since the coordinates of the locus of points defining the boundary of the region AA satisfy equation
(50), equation (54) can be rewritten as

P (x.O,•'yo .4,] =I - exp1-2-i-- - + b(55)

Subtracting I from both sides and taking the natural logarithm (In) of both sides gives another of
Stansfi'2ld's results

42a + b -2 In I - P .\ojo EAJ, (56)

Equation (56) expresses a convenient relationship between the locus of points bounding an elliptical

"region Ak and the probability that the coordinates of a given DF fix will fall inside AA. It is often desir-
able to specify a required value of P (.xo',yo'EAA) and to use (56) to determine the resultant dimensions
of the region Ah. Indeed, the lengths of the semimajor and semiminor axes (or vice versa if b > a)

4 are

I-,o,,,I = a In I-P(...EA)) 151)I-tr ' 1Ai)
I.Vo,,,I = In l-P(.oyoEA,1 (58)

I-P _ ' -- -l -
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and the a'ea 112, of the region Ak is

112, 7tab In 1-P(xo,YyEAA) (59)

The final consideration we shall give to Stansfield's two-dimensional, radio DF analysis is directed
toward reproduction of Stansfield's expression for the root-mean-square error P2 to be expected in the
DF position fixes in which the statistics are defined by equation (33) and, equivalently, (47). Given a
position fix specified by the coordinates (xo,yo), the absolute positioning error is defined as

(' 2  (X 0
2 + y0 2)-/ (60)

The mean square error is then

P22 a S (XO2 + YO) exp [-f-j- +-- + -jjj dx dy (61)

Evaluation of the integral by expanding the integrand gives

2 8(a 2 + b2) 2 e2d(6
P2 e l u e (2

Thus:

P2- (a 2 + b2)1- (63)

Use of equations (43) and (46) with equation (63) gives

P2= 
(64)

- 12 -
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Im
SECTION 3

l THE THREE-DIMENSIONAl. EXTENSION OF STANSFIELD'S THEORY

3.1 THE THREE-DIMENSIONAL DF ENCOUNTER
S~3 / / IVITIAL ('ONCEPJS

Figure 3-I illustrates the general distribution of' the participants and identifies most of the param-
, eters used to characterize the three-dimensional l)F encounter. It should be understood that, in gen-

eral, the DF sites may be placed anywhere in the three-din-ensional space surrounding the actual targetK ." position at 0.

As in the two-dimensional case, it is the objective of the network of DF sites to make BL meas-
urements and process these measurements in an operations center to determine a best estimate of the
location of' the target transmitter. However, contrary to the approach employed in the two-dimensional
case, most of the fundamental quantities of interest w~ill be represented as vectors.

This could have been done in the two-dimensional case, but it was desirable to follow Stansfield's
procedure using scalar quantities only in order to facilitate comparison of Section 2 with Stansfield's oni-
ginal paper. In addition to considering the three-dimensional theory, this section will present the most
important of Stansfield's results as special cases of the three-dimensional theory applied to a planar
space. Where appropriate, these will be presented in vector notation.

The points of the "encounter volume" throughout which the DF sites are distributed are labeled
via a fixed, right-handed Cartesian coordinate system whose origin is coincident with the actual position
of the target transmitter. It is assumed that each DF site employs some form of directional antenna
system from which a unit "bearing vector" (B) along a line toward the target can be determined. The
situation for__the j'th DF site is shown in detail in Fi~gure 3-1. The BL t~othe actual transmitter location
is the line JO which is represented by the vector D,. The length of JO is the magnitude of D, and is
represented by the symbol D,. A similar convention will apply for all vector quantities: e.g., p, is the
magnitude of the vector •,, thus P, = P•P,.

As in the two-dimensional DF encounter, one of the DF sites in the three-dimensional DF
encounter is considered to be an operations center at which the BL data from each DF site are gathered
and processed in order to determine the best estimate for the location of the target transmitter. If the
point S with coordinates (x.y,: ) m Figure 3-1 is hypothetically offered as the location of the target
transmitter by the personnel of the DF operations center, then the perceived error associated with the
target transmitter bearing measurement B, from the j'th DF site is the vector 4,. The actual bearing
error in the j'th DF site's measurement, which is unknown to the personnel of the DF operations
center, is the vector j•,. "Ihe vector ? is a position vector describing the point S relative to the fixed
coordinate system with its origin at 0, i.e., the components of 7 are (x.v.:). Since it is not necessarily
clear from inspection of Figure 3-I., it wi ll be emphasized here that the vectors B,. D.. p;. q,, andr
need not, in general, be coplanar.

3.1.2 THE CONSTRU('TION OF ji, AND 4..
We embark here upon a digression required in order to lend credence to concepts employed later "

• nin the fundamental statistical characterization of the three-dimensional DF~ encounter. As indicated in •

Figures 3-1 and 3-2, we have thus far aissumed the innes OP and SQ to be constructed so that they are
"• perpendicular to the line along JQ, i.e., the vectors ii, and 4, are orthogonal to the vector B,. This
• . approach is consistent with the construction of analogous quantities in Stansfield's two-dimensional DF

theory and is sensible when attempting a logical extension of that theory to three dimensions. How-'1 ever, the criterion of constructing ji, and ii, orthogonal to the vector B, is otherwise arbitrary. Indeed,i it will soon be convenient to think of ji, as being orthogonal to D, and 4, as being orthogonal to 9, + r

as illustrated in Figure 3-3. It is the objective of this subsection to demor'qrate that the assumption
that the linear dimensions of the volume of uncei tainty associated with the target transmitter's location

I are small when compared with the distances D, (as per Stansfield's assumption in two-dimensions)

leads to the same essential analytical conclusions whether we assume ji, and 4, orthogonal to B, or that
ji, is orthogonal to D; and 4, is orthogonal to /D, + 7.

S~-13-
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Figure 3-3 A Magnified View of the Coordinate Origin to Determine •,

When 4, is Orthogonal to D +7 and T. is Orthogonal to D•j

As in Stansfield's two-dimensional DF theory, we will ultimately empley expressions for each perceived
'I bearing error q, in terms of its associated actual bearing error p, and the components of the vector i.

We shall find the appropriate expression by first expressing 4, in terms of j, and r.

- -First, consider Figure 3-2 and the case wherein f, and q, are orthogonal to 8,. From the figure
one can sec the relation

( ' + ;) - i = ~(4 + T) " hjI, (65)

so that solving for q, one has

q= 1, - r + (T B,) B, (66)

I Now, as per Stansfield's as, umption, we shall stipulate that the BL errors will be sufficiently small so
that we may substitute D, for 9, in equation (66) without significantly altering q,, and thus we write

, , - 7+ (•, b,)b, (67)

From this expression we find, upon taking the scalar product,

•;• ," qq,, = (j- , • -• ) - : -D )2 (68)

-15 -
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Now, let us attempt the same thing except let us begin by considering Figure 3-3 and the case where p,
is orthogonal to D, and , is orthogonal to D, + i. From the figure, we see that

(G + )- , = f B, (69)

Taking the scalar product with B8, on both sides gives

(= T + ii,)- P'i (70)

so equation (69) can be written in the symmetrical form

Equation (71) has a solution of the form

S, = - i, + k,1, (72)

where k, is an arbitrary constant. However, we also have the condition that •, is orthogonal to D, + F
expressed as

(,+ 7) • - 0 (73)

Using equation (72) in equation (73) leads to an expression for k, given by

7 •(D, + 7 - Pi) (4
= k i 5~ij, (74)

Thus, the exact solution for •, is given by

P, rI-b+) rB, (75) ,

Comparison of equation (75) with equation (67) gives the impression that the two are distinct
which is the case in general. However, we may rewrite equation (74) as

k = I + Dr (76)
rD, r

so that when << and (b• h,), we see that

A, • 7 • D•(77) •

so that equation (75) becomes

-16-
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;+ (78)

which is identical to equation (67).

What we have demonstrated here is that when the linear dimensions of the volume of uncertainty
of the transmitter position fix are small relative to the distances D, construction of the vectors T, and
4, orthogonal to the vectors D, and DA + •, respectively, yields the same approximate analytical rela-
tionship between 4, and 7j as when j), and 4, are constructed orthogonal to B,.

Equation (68) plays the same important role in the three-dimensional DF theory as that played by
equation (8) in Stansfield's two-dimensional theory. Although equation (78) is written as a function of
the vectors p), r, and bD, it can also be expressed in terms of B1. D1, and 7, since ý3, is completely
specified if B. and D, are known. Indeed, when T, is constructed orthogonal to Bs, we have the rela-
tions

B )1 =0 (79)

(B, x b,= 0 (80)

( *xh,) (Db,x b,)= I[(bx b,) (b,xb,)lIl= H, (81)

which when solved yield

- (1 - B,2) Dj, + (B, B,,) Dj, + (B,,B,:)D,:
P/%= HH (82)

i (tBB,)D 1 , - (1 - BJ) )D,, + (B/I Bj:)D,: (83)

H,

(B,: B1.) D,, + (B,: Bj, ) D,, - (1 - B,: 2) D,: (84)
:= H,

where

H, J(Bjý D1, B,, D1 )2 + (,6"D': B,: D1x) 2 +(BjE-, D3< I (85)

and (p.,,pj;,p,.) are the components of h, while (B,,,B,,,,B.) and (L.,,,D,:) are the components of
-B and D,, respectively. As before, the vertical bars around terms in equations (81) and (85) indicate3 that the absolute value of each term is to be used. Thus , is known when h, and b, are known and,
since the magnitude of T, is given by

p, D1H, (86)

then the components of T, =/53J are

-17-
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(/.,), = -(1 - B2) D,,D, + (B,, B,)D,, D, + (B, B,:)D,: D (87)

u), = ( ,D, D, - (I - B,,)0D.,.D, + (8j, Bj:),, D, D (88)

(.; : =(B):Bj,) D,, D, + (B,- B ,, D,, D, - (I1- Bj:') D z Dj (89)

Now, when ? is constructed orthogonal to A, we have the relations

A =- A = 0 (90)

(Pxb,) • B,=0 (91)

( (x i,) x&,) [(Dx,&,) D, x,&,) H, (92)

which when solved yield the components of h, as

(1 - D1, 2)B,,- (D,,O.)B,.. - (DD,)B
Pit = /(93)

.=-(D_ D,.)B + (I -D,,. 2) B, - (D,.D..) B.
, (94)

P _ (D,:D,) Bx- (D,:D,) D,, +(-Dz2) B':4, (95)

where, as before, H, is given by equation (85). The components of •, are therefore given by [since

equation (86) is still applicable]
(., • =(I D ,2) B, Dj (V,.,.D",)B,, D/ -( ,. : B., (96DI

~J (DtJ:)BD j (96)

= -(D,, D,,.) B,, D, + (1 - D,, 2) Bjp D, - (Wj, D:) B,.D, (97)

(,):=-(Dj: D,,) Bj, LD, - (D,:Dj,) B, DI + (1D,:2) B, D, (98)

-18 -
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3.1..3 THE FLNDAAIENT4L STA TIST7I(4L (."HARA('FTRIZA 7i0N OF THE 7HR EE-DiMENSIONAL

D, DF TIlOR Y

In Stansfield's two-dimensional DF theory, the actual bearing errors 1), were assumed to be the
j values of random variables P, that were normally distributed with zero mean. In the three-dimensional

case, our bearing errors are represented by the vectors Ao which vary in some stochastic fashion from
one DF location attempt to another. In contrast to the two-dimensional theory wherein only azimuthal
bearing errors were considered, we must consider both azimuthal and elevation bearing error com-
ponents in the three-dimensional theory. In order to facilitate the characterization of this slightly more
complicated circumstance, we imagine the construction of a right-handed triad of orthogona; unit vec-
tors at the point O for each DF site. For each DF site. these unit vectors are labeled &. 63, and j; and
the specific triad for the j'th DF site is thus composed of the vectors &J, 183, ,,. These vectors define a
coordinate system (a,/3,), in terms of which the actual bearing error T, will be resolved for analytic
convenience.

Figure 3-4 is representation of the (a.13,y) coordinate axes associated with the j'th DF site. The
vector &, is collinear with the vecior 1, or (D,) but opposite in direction. The unit vectors /3, and 5, Iare constructed so they lie in a plane perpendicular to the vector &, and such that 3, lies in the x-y
plane while the Projection of ", onto &- is always greater than or equal to zero. Mathematically. these
conditions may be expressed by the equations

, =0 (99)

(&,xj,) •h. = 0 (100)

(&,xj,,) (&,x•)=[a + a,2 (101)

Solving for j', from these in terms of &, and using/3, (5, x &,) and lb = - D,, we have

D, =-D,) h,-(D,, )ii, - (D,.) fi. (102)

- -(D,,.)It, + (D,,) (103)A (Ot,2 + D1, 2) 1/- 13

-.- (D,, Dj:) f, D( D,D:) i, + ( D, 2+ ,D 2) Tz (104)
•J =DO, 2 + D11 - 2)V.

These expressions will be of value in later discussions.

Figure 3-5 shows how the actual bearing error vector h, can be resolved in the (a,p3,y), coordi-
nate system. Since we shall choose to construct j), orthogonal to the vector D,, P lies in the plane of
5, and 3,. A fundamental assumption of the three-dimensional analysis pursued here is that the eleva-
tion and azimuth components of P,, (i)•, and ( respectively, are the values of normally distrib-

4".1 uted random variables with zero means and equal variance; i.e., (P), has the probability density

exp~ 21

and (P)t, has the probability density

-19-
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f [m 1 exp I 2( 2  (16

where

Tj= (u ,),D, = (o0)I), rD, (107)

Thus, the quantity p, which is the magnitude of the vector j), and is given by the expression

P, 2q,),-2 + (),), (108)

is the value of a random variable P, that is Rayleigh distributed (References 7 and 8 ); i.e., P, has the

pip, = 2 'I -2 (109)

Also. the angle q~, is the value of a random variable q), that is uniformly distributed; i.e., '1, has the

These results characterize the actual bearing error vector p, - pIp, as being composed of two dis-
tinct stochastic factors, a magnitude p, that is^Rayleigh distributed, and a unit vector j, which assumes
random orientations about the line along D1 with uniform likelihood. We now have a statistical
representation of our actual bearing erro- P, analogous to the statistical characterization given to
Stansfield's actual bearing error by equation (3).

At this point it is possible to characterize the set of perceived bearing errors {1,} resulting from a
hypothesized target transmitter location S as a statistical sample whose likelihood of being witnessed is
maximum for the best estimate of the target transmitter's location.

This is a procedure anflogous to Stansfield's approach for finding the best estimate of the target
transmitter's location. However, we will circumvent 'his lengthier alternative and, instead, invoke the
least squares criterion directly. Thus, we shall stipulate that the personnel of the DF operations center
select as their DF fix the point which minimizes the sum of the squares of the relative errors, where
the relative error for the j'th DF site is given by

analogous to the definition of relative error given for the two-dimensional case. The 2 in the denomi-
nator appears because Q, will be Rayleigh distributed in the three-dimensional case as opposed to nor-
mally distributed in the two-dimensional case. The sum of the squares of the relative errors now has
the form

-21 -
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A 2 D2- (112)

analogous to that of equation (6).

Now, with the aid equation (68), equation (112) can be written as

0- •• (- fid (i - A') - U, " b')21
A (113)

2 (or,D 1,)2

or

[ 22+ (x2 + ., + z2)-2(.\p/, + rpl, + :p1) - (xDr + yD,, + zD,.)2
A = 2(ojD,)2  (114)

i

Equation (114) is analogous to the result obtained by Stansfield as expressed in equation (9). Just as
equation (9) was crucial to Stansfield's fu.-ther development of the two-dimensional DF theory, so is
equation (114) crucial as a prerequisite to the development of the substantial analytical results of the
three-dimensional DF theory. Beginning with equation (114), we will derive closed-form expressions
for the DF fix coordinates (x,y,z) for any single attempt to locate the target transmitter, once the set of
actual bearing errors is known Tj, and we will describe the statistical features of the triple (x,y,z) when
the actual bearing errors are characterized as random variables.
3.2 THE THREE-DIMENSIONAL DF ANALYTICAL RESULTS

3.2.1 EYPRESSION FOR THE DF FIX COORDINA TES

We will choose as the best estimate of the target transmitter's location that point S with coordi-
nates (.v.,z) that minimizes A as given in equation (114). In order to find closed form expressions forthe c od at s o ,we evl aeOA OA an OA

coordinates of S" evaluate - and LA- and set each to zero in order to produce three

equations in three unknowns x,); and The three resultant equations are

+ 11+: 1-ID:

Xtl (',O,) 2  (,D,,) + + -(D,'D4i (116)

(i,,) 2  
- i~ o)2 j2 + + Z1 1''(16

""j = D, D,,) + D, ] + : 1y D (117). ( r 1 1 )' 2 ( or I D , ) 2I ( o ', D , ) 2 ( o ' ) D 2

Next we define a set of fundamental parameters as follows: .

-22-
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= .... (oD)? J (118)

I - D11 (119)

( D
(0r/ '= (120)

V -- 5 (121)

Ni (117) for ; (, D) 2 
(1

(D, D,)= (122)

PPI(PPD) 1 ) PP(123)

Now. solving equations (115) through (117) for v ,and z gives

- (OaD2 "1" -D)) (°" D,) 2  "(/LT .4  (o.,D,)2  (124

z = [X(. - {2) + v(•ii- ) + , -

Q(Xq -/Pi (y,D,,) 2  + (-q - A I/
V, = I I- (125)

X ( / - 2) + V ( 4 77 q v ) + q( P4

I JJ qI~j + (TjL* I +~: .2)1IA

Z- (126) +

XI \,I - ý2) + V(qq + T~)1, q+ I 16

Equations (124) through (126) are the coordinates of the best estimate of the location of the target
transmitter as determined by the personnel of the DF operations center for a given set of actual bearing
errors (p, = p.,pj, 1, + plpj,. 4, + p,p,:Thl. These are analogous to Stansfield's equations for the fix coor-
dinates given by equations (10) and (11). Indeed, if we apply these equations to the case where all of

the DF encounter participants lie in the x-j plane and we set the elevation error to zero, then

_= = p,: = 0, and equations (124) through (126) become

/- (' l.pJ, - vpA (127)

(a,- 2D,)

-23 -
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= X.-IZI(P,I~ -11, (128)

:=0

Now, as per Stansfield's theory, the vector T is given by Pl = PIj, where p, is the value of a normally
distributed random variable P, of zero mean (thus it can assume positive and negative values with
equal likelihood) and P, is a fixed unit vector very nearly orthogonal to D1; i.e., (see, for instance, Fig-
ure 2- 1)
ur2)= - sin 0,ib + cos b, (129)

Equations (127) and (128) can now be written as

- ~ P, Cos 0 Gp .,sin Oj (130)X pc2) Alo psin)2

YD) 2  (oD,)2  (131)I I
where v,= - v.

Equations (130) and (131) are Stansfield's equations (16) and (17) determined directly from the
three-dimensional fix equations (124) through (126). Using equations (93) through (95) for the case
when B,, = DN •0, we can express Stansfield's equations entirely in terms of the set of D, and the

I components of BI and Ds,

1 ____ ,~, - B,,D,,) (A D, + VDIN)(3

which can be expressed in vector notation as

x = (132))•/ , D

(:,i)+ • (134)
0\= (x, V2) .~12I D. X, j(DIN b2 + D, f~ 2)(133)

I- - 24- -
2)~~~~k V0 h).-'-,- ,
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3.2.2 DF FIX COORDINA TE SA TISTICS
Let us define the variables ri, r2, and r3 by the equations

"1( ,,) (136)

"= P7',P,2(137)
(a, D,)'

r=1 (138)
J ((T, D))

2 j

We have changed the subscripts x to 1, y to 2, and x to 3 for computational and notational conveni-
ence; i.e., pl, - p,- P1, = P,2, PI:-- P,3.

Since p,, P11. Pj2, and P,3 are all the values of random variables, where P, is Rayleigh distributed
as per equation (109) and P,, PA2, and P,3 are all distributed alike (we will see exactly how they are dis-
tributed later), then the quantities r/. r2, and r3 are the values of random variables we will denote as
R1, R2, and R3. Note that the random variables V, = PiP,1 , V2 = PP,2, and V3 = PP,3 are all simi-
larly distributed. Inspection of equations (124) through (126) reveals that the fix coordinates x, y, and

are linear functions of r, r2, and r3 and thus the values of random variables we will denote as V, )
and Z It is our objective in this section to determine the joint probability density for the random vari-
ables X, Y, and Z whose values are the fix coordinates for any given attempt to locate the target
transmitter.

We will begin by assuming that the number of DF sites n is large enough that, by virtue of the
central limit theorem (Reference 5). the randomn variables R1 , R2 , and R3 are normally distributed.
The joint probability density for R1,, R2, and R3 is then given by (References 6 and 9)

exp -- I [Rq[C- ][R]

Sp~rl r2'r3)----- (27T) 31/(Det [C]D"(19

where (C] is the covariance matrix, [C-1 the inverse of the covariance matrix, [R] is the deviation
matrix, and [R'1 is the transpose of the matrix [RI. The determinant of the matrix [C] is written as
Det [CL.

The elements of [C] are given by

= Cov (R,, R,,,) (140)

where n = 1, 2, or 3 and m = 1, 2, or 3; i.t., C,,,, is in the mth row and nth column of the 3-by-3
matrix [C0. The matrix [R] is a column vector given by

/I wher R R, and (R are the m ean values of the random variables R1,R, and R,, -tively.
To determine the explicit form of the joint density of equation (139), one must find 'R,,P. , 4 1
R, and the covariance elements C n = 1, 2, 3 and m = 1, 2, 3.

From the definitions of the mean and covariance
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IR ,, (\rD,)2" . n=12.3 (142)

and

• c;,, P, P,",, P "',\ (P, P,,,X/P, P•,,)\

S[aDo, DD uX2 .tiand m=1.2.3 (143)

It now becomes apparent that we must know the probability density for each of the random variables in
equations (142) and (143). We already know that P, is Rayleigh distributed as per equation (109), and
we will now determine the probability density for each random variable P,,,, n = 1, 2, 3. whose values
are the components of the unit vector j,. Before proceeding, however, we shall impose the assumption
that P, and P,,,, n = 1, 2, 3, are statistically independent quantities; i.e., we suppose that the magnitude
of j, and its direction are independent. We further suppose that the measurements at one DF site are
independent of those at another DF site. Equations (142) and (143) can now be written as

R\" (P-,P1D,) n " and tn=1,2,3 (144)

A , _ ( 1 DI ,,
P[\ .\ - P"'

C(.,D,) 4  ,n and mz=1,2.3 (145)

Now, notice from Figure 3-5 that P, can be written as

= cos 0,/f, + sin (4),, (146)

and, sincef3, and , are given by equations (103) and (104) respectively, equation (146) can be written
as

It
1 2/[ + M,(D cos 6,-D,1 D,.; ýin 0,)fiT,= D,,2 + D,2).

- (DI cos 4, + D,2D,3 sin 40,)h + (D, 1
2 + D,2

2) sin 0,h3 (147)

from which we see

(D,, cos 4),- D,D-, sin )(4
P,1 = (12DJ) 2,'" (148)

A,2 = - (Dl cos 4, + D,2D,3 sin 4),) (149)

(D, 2 + D,2)-,

p= (D,1
2 + D,2

2)1" sin d, (150)

Each of the components of Pj varies in a random manner because the angle 4, is the value of a

-26-
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unilrmly distributed random variable (P, [see equation (110)]. The statistical nature of' the random

variables PIj,. P,2.and P,3 is more readily recognized if'equations (148) and (149) are written as

Do, 2 + D,, o,.'-

2+ D s ,

1 2 + 4 2 D,. 2D '

2 D, i2 + D, 2  Jsin [0,+82] (152)

where

8t=tan -'(-DID,3) (153)

82 t n-Il D2D,3

Thus, the random variables P,,,, n = 1, 2, 3, have probability densities of the form (References 7 and

8)

piP,,,] = an(F,2-_O,, 2)½ (155)

where F,,, is the coefficient of the sine factor of p,, in the forms of equations (150) through (152), e.g.,[ ,2 + D,4
2 D,3 /"..

for I,, FI 4 2 ' D2 Thus, pI < ,,. With equa.on (155) we are able to evaluate
DI 2 + D12 2

( P,,/,>i.e.

/(P,,) = p,,,pl)p,.] dplp,,, " (, 2_p,,, 2): 0 (156)

a result that follows from the fact that the integrand in the second integral is an odd function of p,,.

Equations (144) and (145) now reduce to

IR,,>= 0 (157)

S..,, P= ,,/Pil ) (158)
(O, D,)4

From equation (109) it follows that

pi (P,.)2 =(a,D, 2 (159)

thus we are left with evaluating (Pi,,P,). In order to do this, we first express p,,, as

U p,,, a,,, cos k, + b,,, sin k, (160)

a simplified representation of equations (148) through (150), where
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Dzn (161)
a11  (D, 2 + D,2

2)112

-Djt (162)
a,. = (D,1

2 + D, 2
2)-(6

a.3 = 0 (163)

-DjlDi3 (164)b], = (DJ 2 + D ,2)1/:,(1 4

D O,2 Ds3 (165)bi2 = (DI 2 + D,2
2)-/½

D= (D, 2 + D,2
2)v' (166)

In general, then,

P,,,P.,= as,,a,,,, cos 2 ,j + (a,,,b,,,, + a1,,,,b1,,) cos 40, sin 0, + b1,,b1,,, sin2 oj (167)

thus use of equation (110) gives

27r 
2
7r

(P,')= f p,,, (0,) p,,,,(,)p[4 d.... = l-- pf p[,, (0) pj, (0) dhj1  (168)
0 27r 0

Therefore, use of equation (167) in equation (168) yields

ii 2 21r 27rm
. = =-a cos2 •d(I(a.b.o+a..b. os , sin , dd+b,,b,,,,fo sin2  d (169)

or

- a,,,a,,, + b,,, b,, (170)
", P/, ,, 2

Now, substitution of equations (159) and (170) into equation (158) gives

, ,,, a ,,, + b ,,,,)

+b =' Y) (171)(o'D,)2

Explicit substitution of the a's and b's from equations (161) through (166) gives for the covariance ele-
ments (upon changing back to the subscripts .V,-,: for 1, 2, 3, respectively)

- - -- •(172)
[(o,D)21

(1-,, (173)
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(:- [ G .D ). . (174)

C,. = = - -- --, (175)
((T, D,)2

=[- 1, DlI)- 
(176)

C-= C-, = (r,D,)2  (177

Comparison of the covariance matrix elements with equations (118) through (123) shows that the
coefficients of the fix coordinates (xv,: ) in equations (115) through (117) are, in fact, these same
covariance eiements. Also, equation (157) means that the deviation matrix of equation (151) reduces
to

[R] = (178)

Thus, if we define the column vector [X] as

IxI = (179)

then equations (115) through (117) can be expressed by the matrix equation

[R] = [C][XI (180)

This important result provides us with the capability to use equation (139).for the joint probability den-
sity of the random variables R,, R,, and R: in order to derive the joint probability density for the DF
fix random variables X Y, Z Indeed, since /-, r1, and r- are each functions of the fix coordinates
(x,y,z) as expressed b,, (180), then the joint probability density for the fix coordinates is given by

p(x,v,z) = {,or, [x,y,z] ,r, [..y,:] .r-_x,j,z])}{J(r, r. r.;x,y,:)} (181)

where J (r,,rr; x.y,:) is the Jacobian determinant for the transformation from the coordinates
(r~,, ,r) to the coordinates (x,y,z). Use of equations (115) through (117) yields

rJ , r.x,y,z) = Det [C] (182)

From equations (139) and (180) we have

p~rix~~z],r1 x~yzJ rixy~zJ =ex~ -L2[Kr] [C1 [ C-I] [C] [XI}
(2ir0 "2(Det [C]),/ (183)

or, since [C-']ICIX) = IXI and the symmetry of [C] gives [CTr = [C], then
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x1-2j'ICIX1
p(r,[x,y,z],r, [x [,Az],r[..,ziI =V (184)

Use of the parameter definiuons in equations (118) through (123) and substitution of equations (182)
and (184) into equation (181) gives the three-dimensional joint probability density for the DF fix coor-
dinates as

0X(/g - 2) + V(T, q)v + 7i(Výp(x,y,z) --- (2rr)' 2

Iexpi - ~(X~x2 + ,L~t? + 6? + 2vxy + 2'rixz + 2y)(185)
2

After the expressions given for the fix coordinates in equations (124) through (126), equation
(185) is the second significant analytical result of the three-dimensional DF theory. When multiplied
by the differential volume of the neighborhood about a point (x,y,:), the joint density of equation
(185) gives the probability that the DF fix resulting from any single attempt to locate the target
transmitter will fall within that neighborhood of the point (x,y,z). The quadratic nature of the argu-
ment of the exponential and the fact that A, 1A, and ý are all greater than or equal to zero indicates that
the surfaces of constant likelihood are ellipsoids centered on the actual target position (the point 0 in
Figure 3-1).

Equation (185) is, of course, analogous to that of Stansfield's two-dimensional theory as given by
equation (33). Indeed, if one applies the statistical analysis procedure employed to generate equation
(185) to the case where all the participants of the DF encounter lie in the x-y plane and the elevation
error P: = 0 for each DF site, then the matrix [R] becomes reduced to

Jr,1
[R] (186)

where r, and r, are given by equations (136) and (137). One also considers that the entire random
variation of the bearing errors is embodied in normally var~in, random magnitudes P., the unit vector
components p,,, being deterministically related to the vectors D,. The random variables R., and R, are
still normally varying, so the joint probability density for the random variables R, and R, is given by a
modification of equation (139) for the two-dimensional case; i.e.,

p(rx.5) = exp[ - (IRrI[C-IIRI)I (187)
(270)"'(Det [C])"'/

The covariance matrix is now a 2-by-2 matrix whose elements are given by equations (172), (173), and(17S), where it must be understood that tt-e vector D, has only the components D,, and D., in this

two-dimensional case. We see then that if we now define

[ AiH (188)'

then we have an analogous result in two-dimensions to that given by equation (180) for three- 1
dimensional; i.e.,

[R] = [CI[X] (189)
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Substitution of equation (189) into equation (187), use of the parameter definitions from equations
(118), (119), and (121), and multiplication of the result by the Jacobian determinant for the variable
change from the (r,.r,) space to the (x.v) space gives

P2Ay) B expF--(.\ + 2v.-v +/zy2) (190)

This is, of' course, Stansfield's result and is identical to equation (33) [recall that v as defined by equa-
tion (121) is opposite in sign to Stansfield's v as defined by equation (14)].

3.2.3 FURTHER CONSIDERA TIONS OF THE JOINT DENSITY OF THE DF FIX COORDINA TES

Now that it has been shown that the surfaces of constant likelihood for the DF fix of a three-
dimensional DF encounter are ellipsoids centered on the actual target transmitter location, it is useful
to deiive ancillary results which allow us to describe the dimensions and orientation of these ellipsoids
relative to our reference coordinate system as well as to compute the probability that a DF fix will fall
within the region bounded by these surfaces.

From equations (181), (182), and (184) we have

{Det [ CllV"exp{- L[ X7)1[ C][X] }

p = (21.)' 2  (191)

which is an alternate form of equation (185) for the joint probability density of the DF fix coordinates.
The scalar quantity

Q = [X'1[]ICx] (192)

which apart from a factor of (- 2) is the argument of the exponential in equation (191), is a quadratic
form because of the fact that [Cl is a symmetric matrix. Since [C] is also real, it can be diagonalized
(Reference [101) by an appropriate transformation. In particular, there is an orthogonal transformation
matrix [Al which transforms the coordinates (x,y,:) of a point P in the encounter space relative to our
reference coordinate system to the coordinates (x0 ,y0,z 0 ) of the same point P relative to a coordinate
frame whose origin is still at the actual target position but whose axes are, in general, rotated relative to
the axes of the reference system. Thus, there is a matrix [A] such that

[X] = [A][X] (193)

where

I X0 O (14[X I I (194)

Since the transpose of an orthogonal transformation matrix [A] is also its inverse, then equation (193)

implies the results

[ V I] [( X0) 1][A ], [X ] [A ' [, Vo• l [ (195)

so equation (192) becomes

Q = 1(X0) T ]II[ llA , rl[lol (196)
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where we require

IAIICIIA ' = D[] (197)

where [D] is a diagonal matrix. If we denote the matrix element in the j'th row and k'th column as
[Dl,k, then equation (191) becomes

(Det IC]l'/ J(xy,z;xoyozo) 2 2 2
p (xo.Yo.:o) - (2r) 32 exp (198)

since

J(x,y,:;x0.y0 .:0) = 1 (199)

for orthogonal transformations to rotated coordinate systems (with no inversion), then we may write
equation (198) as

A02 2 Z

()et [CII'/2 exp 1L_ + (200)(27)0 2  1 21 a + (200)

where to allow comparison with Stansfield's results we have defined

2--= [1 (201)

l = [D 22  (202)

k b2

1-I- [D133  (203)

Using the definitions in equations (201) through (203) and taking the determinant of both sides of

equation (197) gives

(ii!
Det[CI=1bcJ (204

so equation (200) becomes

V( (. 2 yo2 2 1
il" Yx o Z0  i

exp i + + +
p(xo0yoz0) (2r)3/2(2b,) (205) j

The result of equation (205) is analogous to that of equation (47) from Stansfield's two-dimensional
theory. The joint probability density p(xo,yozo) for the random variables X0, Y0.Z0 determines, when j
multiplied by a differential volume, the likelihood that the DF fix coordinates resulting from any single
attempt to locate the target transmitte: will fall within a differential neighborhood of the point
(xoyo,zo). Thus, it is possible to find a coordinate system with the actual target location at its origin
and relative to which the surfaces of constant likelihood are ellipsoids expressed in canonical form; i.e., I.
each of the locus of points for which the argument of the exponential in equation (205) is a constant
value k2 satisfies the equation
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-- + - + -- , = (206)
a b2  (_

Equation (206) is analogous to equation (34) discussed in association with Stansfield's elliptic con-

tours of equal likelihood. It was subsequenily shown in equations (44) and (45) that the quantities

and b could be defined in terms of the fundamental parameters A, /.. and t,. In order to accomplish

a similar sort of result for the three-dimensional theory, the following identity was considered:

[AI[CI[Ar] - [A]r[l][A71 = [1)]- r[I] (207)

where [1] is the identity matrix. The validity of equation (207) follows from equation (197) Using
the distributive property of matrix multiplication over addition, equation (207) can be written as

[A]{[C] - r[1]l[A7 = [D] - ,if] (208)

and taking determinants on both sides gives
? 3

Det {[Cl - [l = D,-r) (209)

Equation (209) is the equation for the three-dimensional theory that is analogous to equations (44) and(45) from the two-dimensional theory. Equation (209) shows that the diagonal elements of [D] are the

roots of the third-degree polynomial in r on the left-hand side of the equation. Once the elements

[D],,, j = 1, 2, 3, are found, then equations (201) through (203) yield - and' Indeed,
a' b'an

when set equal to zero, the left-hand side of equation (209) is the characteristic polynomial of the prob-
lem and is expressed in terms of the fundamental parameters of equations (118) through (123) as

P + Q1 + + .)- -- (V2 +',72 + -2 - f - A, - q-),"

- ,A( - •2) + V(• - V.) + 7(q• - rTP.) = 0 (210)

As mentioned, each of the matrix elements [D], is set equal to one of the roots of the characteristic
polynomial in equation (210), one root is associated with only one matrix element at a time. However,
when there are distinct roots, there are six unique ways in which the matrix elements [D],, can be
assigned values. This circumstance merely reflects the fact that there are six unique ways in which the
axes of the reference coordinate system can be rotated and aligned with the principal axes of an equal
likelihood ellipsoid so as to yield a reference system relatie to which the equation of the locus of the
ellipsoid in canonical form. For most applications, the ambiguity in the assignment of values to the ele-
ments WDU• will be of no consequence, although it is important for the analyst to understand how his
assignment of these values affects the characterization of his particular problem.

Once the matrix [D] is known, one can also specify the unit vectors that define the axes of the
(xoYo,zo) coordinate system and thereby determine the orientation of a given family of ellipsoids of
constant likelihood. Starting with equation (197), we find

[CIIA:1 = [Ai][I)] (211)

If, for a given squarz matrix [M], we let [M]D denote a column vector formed from the j'th column of
S[M], then from equation (211) we have
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[ ClAIAJ= jICHAl-'JJ - Arl,~[D]1 j (2 12)

Now, since

[AT),, = [[I][ATj], (13
[AI,-(213)

then equation (213) becomes

[C ][AJ1, = [DI jjl[1][A' iJ4, (214)

or

[C,[AA'] = [D] H[l][A T j" (215)

and thus

I[C-[DI ,[I]I[Ar]' = 0 (216)

Equation (216) is a matrix representation of three equations for the three unknown [A"]T,,, [AT]2j, and

[AT] 3j. The equation will have a nontrivial solution only if

Det I[[C]-[D]jj[1JI = 0 (217)

Starting again with (197) one can show that

[AI[[CIID]ltlIJI[ArT ] [DI-[DIj[I (218)

where [D] - [D], [11 is a diagonal matrix for which

[[D] - IDlIJJl] =0 (219)

so that taking determinants on both sides of equation (218) yields (217). Thus, non-trival solutions of
equation (216) are assured.

We now have a way of finding each of the columns of the matrix [AT], and thus we have [AT]
and the orthogonal transformation matrix [A] (which is the transpose of [Ar)). Notice from equation
(195) that

IX] = [ATr[X0I (220)

A unit vector along the xo axis can be written in the (x0,yozo) system as

h,, I = (221)

so the coordinates of this vector in the (x,v,z) system are given by substitution of equation (221) into
equation (220). A similar procedure is used to express b, and b, yielding

bA,0 =[Arl2 (222)

i',= [A') (223)
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I
o-[A 13' (224)

Thus, the axes of the (.\o, 0 ,yo) coordinate system are known, and, because these are along the princi-
pal axes of the ellipsoids of constant likelihood, we know the orientation of these principal axes relative
to the axes of the (x,y,z) coordinate system. Indeed, to specify the orientation of any given ellipsoid of
constant likelihood we now need only to determine the points at which the ellipsoid intersects each of
the principal axes, and this is easily done with the use of equation (206) since each of the matrix ele-
ments [D], is associated wit;- one column vector [A.; and is related to the coefficients of equation
(206) via equations (201) through (203).

We are now in a position to consider the problem of determining the probability of the e\ent
(x0',v0',z0')E VA that the coordinates of a DF fix (x0',.V0 ',z-0') will fall within the region V4 enclosed by
the ellipsoid of constant likelihood whose locus is given by

.2 o2
a2 + + . 2  (225)

a2  b2  c

A family of ellipsuids concentric about the point 0 of the actual target position is given by the equation

X° 1.0 Z K2, 0<K<_ (226)2 +2
a2  b2  C2

The ellipsoid of equation (225) is one member of this family. The probability that the fix point
(.\'j 0',zo') lies between the ellipsoidal suffaces defined by, K and K + dK is, using equation (205),

K4 (,XK0( J,0 :o) d vodyo = d K2exp[I -4-1 dK (227)
K.K+dIK 7

Thus, the desired probability can be evaluated by

A /(2)',
P(xo',yZ'.zO'E 1/) = 4 f / 2exp[_12] &u (228)

(70' 0

or

P(x0',y0 ', 0'E V) =erf k j2-I-Ikexpj-LI (229)

Equation (229) is analogous to equation (54), derived for the two-dimensional DF encounter. We
cannot solve equation (229) explicitly for k in terms of P(x&',yo'.:0'e VA) as was possible for equation
(54) in two dimensions. However, we can still derive results in the three-dimensional case that are
equivalent to equations (57) and (58) which give the principal axes intercepts in the two-dimensional
case. Indeed, if one plots the funrction P(x0 ',.yv',z 0'E VA) as given by equation (229) on "probability
paper" (see Figure 3-6), then one can graphically invert the equation to solve for A given a desired
value of P(xo',y0 ',zo'E VA). Thus, if one wishes to determine the principal axis intercepts of an ellipsoidj within which the DF fix point has a probability y of falling, one enters the axis of P(.0 ',y0 ',Z0 'G VA) at y
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and traces back to find the associated value of A, A). This procedure is ilustrated in Figure 3-6. The

principal axes intercepts of the ellipsoid within which the DF fix has probability y of falling are then

X011= .L- A, a (230)

Y k• b (231)

, k c (232)

P(Xo, YZo Vk) erf - exp
L(2) 2

4.0

3.0

k

2.0 -kV~

1.0

0 Figure 3-6 Graphical Inversion of P(x'o,0'o,z'o,E V5) ?0-75
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One can, in fact, reduce computation time for two-dimensional DF problems by graphical inversion of'

equation (54) instead of using equations (57) and (58) directly.

Of course, in light of equations (230) through (232), the volume Q.; of the region IA contained
within the ellipsoid is

- -u!b A ( 2 3 3 )

If, when given a DF fix specified by the coordinates . we define the absolute positioning

error as

e 3 ( xo 2  + 1 02 + z o2) . (2 3 4 )

then the mean square error is given by

X ,2 ZO 211P3 = ( 2 .) f2 a bc J . ..(x + J,0 + + + Jdx od vodz°" (23 5 )
-00T1 7 2  

7.2

Evaluation of this integral by expanding the integrand gives

' it o
2i_ 0 '2 b1 ~ ~~1ex(,.2) 132.

T2 (I wi texp(- wt) ditj

+ T a2 7 ex dj 12c2b3J exp(- ) 
)dti2

+ 2abJexP(- h.2) dis V/23/PQit wexp(- it-2) ditJ 26

and thus

P . = (.'12 + h" + (2) (23 7 )

This is, of course, the three-dimensional analog of equation (63). Using equations (201) through (203)

we see that equwiion (237) can be written as

{3 + -I- + (238)
Th eto softicnb'•- fDlt1--- ' + D] + 1Db3

2•

The methods of this section can be applied to the two-dimensional DF encounter as well. In the
two-dimensional case the matrix [C] is a 2-by-2 matrix whose elements are given by equations (172),
(173), and (175), where the vector D, has only the components D, and D,,. The characteristic equa-
tion of equation (209) then becomes a second-degree polynomial given by

r2 - (0 + 10 r + (,\A - v2) =0 (239)

from which we derive
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fD], - f l(x + + (x - ,) 2 + 4v2J (240)

I0] 22 = = (A+tt) ± (x - D2 +4v2JJ (241)

Equations (240) and (241) reproduce the results of equations (44) and (45) as deri~ed by Stansfield.
The upper signs in equations (240) and (241) set the unit vector il,, along the semiminor axes and the

unit vector F1,0 along the semimajor axes of the given ellipse of constant likelihood. The lower signs

place Fi,, along the semimajor axes and F41*o along the semiminor axes of the ellipse of constant likeli-
hood. Indeed, using equations (240) and (241) to solve equation (216). and then using equations
(222) through (224) gives the unit vectors of the axes of the rotated referelice system (relative to

which the equations for the ellipses of constant likelihood are in canonical form) as

S-[I, + [X - _1) 0\ - IA, + 4J1(2
11,0 (242)

FIT( - p.) ± (X -) 2 +4v2J+1,+

S, + - A) ( (X -/) +.0 ( 1- + 4v2}
U1 (243)

(2--)(A -J ) ± ) -, 4, 2  + -v2[

where the choice of signs has the same effect described for equations (240) and (241).
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